Activation patterns of hindlimb motor units in the awake rat and their relation to motoneuron intrinsic properties.
نویسندگان
چکیده
The activity of hindlimb motor units from the lateral gastrocnemius and tibialis anterior muscles in the awake rat was compared during locomotion and during slow, sinusoidal muscle stretch. The majority of units were activated with high initial frequencies and often commenced firing with an initial doublet or triplet, even when activated by slow muscle stretch. The high firing rates at recruitment occurred without jumps in the firing rates of other concurrently activated units, the firing rate profiles of which were used as a measure of the net synaptic drive onto the motoneuronal pool. This suggested that the sharp recruitment jumps were not due to an abrupt increase in synaptic drive but rather due to intrinsic properties of the motoneuron. In addition, motor units that were activated phasically by the muscle stretch fired more action potentials during muscle shortening than during muscle lengthening, resulting in rightwardly skewed, asymmetrical firing profiles. In contrast, when the same units fired tonically during the imposed muscle stretch, the frequency profiles were modulated symmetrically and no nonlinearities were observed. Tonically firing units were modulated symmetrically throughout a wide range of firing frequencies, and discrete jumps in rate (i.e., bistable firing) were not observed. The sharp recruitment jumps during locomotion and muscle stretch are proposed to have resulted from the additional depolarization produced by the activation of plateau potentials at recruitment. Likewise, the sustained activation of plateaus subsequent to recruitment may have produced the prolonged firing of the motor units during sinusoidal muscle stretch.
منابع مشابه
Activity of hindlimb motor units during locomotion in the conscious rat.
This paper compares the activity of hindlimb motor units from muscles mainly composed of fast-twitch muscle fibers (medial and lateral gastrocnemius: MG/LG, tibialis anterior: TA) to motor units from a muscle mainly composed of slow-twitch muscle fibers (soleus: SOL) during unrestrained walking in the conscious rat. Several differences in the activation profiles of motor units from these two gr...
متن کاملNoradrenergic Modulation of Intrinsic and Synaptic Properties of Lumbar Motoneurons in the Neonatal Rat Spinal Cord
Although it is known that noradrenaline (NA) powerfully controls spinal motor networks, few data are available regarding the noradrenergic (NAergic) modulation of intrinsic and synaptic properties of neurons in motor networks. Our work explores the cellular basis of NAergic modulation in the rat motor spinal cord. We first show that lumbar motoneurons express the three classes of adrenergic rec...
متن کاملFast-to-slow conversion following chronic low-frequency activation of medial gastrocnemius muscle in cats. II. Motoneuron properties.
Chronic stimulation (for 2-3 mo) of the medial gastrocnemius (MG) muscle nerve by indwelling electrodes renders the normally heterogeneous MG muscle mechanically and histochemically slow (type SO). We tested the hypothesis that motoneurons of MG muscle thus made type SO by chronic stimulation would also convert to slow phenotype. Properties of all single muscle units became homogeneously type S...
متن کاملContribution of intrinsic motoneuron properties to discharge hysteresis and its estimation based on paired motor unit recordings: a simulation study.
Motoneuron activity is strongly influenced by the activation of persistent inward currents (PICs) mediated by voltage-gated sodium and calcium channels. However, the amount of PIC contribution to the activation of human motoneurons can only be estimated indirectly. Simultaneous recordings of pairs of motor units have been used to provide an estimate of the PIC contribution by using the firing r...
متن کاملContribution of intrinsic properties and synaptic inputs to motoneuron discharge patterns: a simulation study.
Motoneuron discharge patterns reflect the interaction of synaptic inputs with intrinsic conductances. Recent work has focused on the contribution of conductances mediating persistent inward currents (PICs), which amplify and prolong the effects of synaptic inputs on motoneuron discharge. Certain features of human motor unit discharge are thought to reflect a relatively stereotyped activation of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 82 2 شماره
صفحات -
تاریخ انتشار 1999